Выбор параметров режима полуавтоматической сварки. Расчет режимов сварки Коэффициент наплавки при полуавтоматической сварке формула

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ Р Ф

ГОУ ВПО «Волжский государственный инженерно-педагогический университет»

Ф.П. Сироткин

РАСЧЕТ ПАРАМЕТРОВ РЕЖИМОВ СВАРКИ

Методические указания по проведению практических занятий по дисциплине «Технология электрической сварки плавлением»

Н. Новгород

Сироткин Ф.П. Расчет параметров режимов сварки: Методические указания по проведению практических занятий по дисциплине «Технология электрической сварки плавлением» - Н.Новгород: ВГИПУ, 2007. - 55 с.

Рецензенты:

Е.Н. Батков – преподаватель спец. дисциплин, Нижегородского строительного техникума.

А.Г. Китов – заведующий кафедрой «Автомобильный транспорт», ГОУ ВПО «Волжского государственного инженерно-педагогического университета»

Аннотация

В методических указаниях приведены расчеты режимов сварки:

В среде углекислого газа;

Механизированной и автоматической под слоем флюса;

Электрошлаковой пластинчатыми и проволочными электродами.

Методические указания содержат подробную последовательность определения параметров режимов сварки, сопровождающихся указанием необходимых формул, таблиц, графиков и номограмм, что позволит студентам самостоятельно рассчитать режимы сварки для различных толщин свариваемых металлов.

Ф.П. Сироткин,2010

© ВГИПУ, 2010

Введение

1. Общие положения

2.1. Расчет режима сварки швов стыковых соединений

2.2. Расчет режима сварки угловых швов

3. Расчет режимов сварки в среде углекислого газа

3.1. Расчет режима сварки в среде углекислого газа швов стыковых соединений

3.2. Расчет режима сварки в среде углекислого газа угловых швов сварных соединений

4. Расчет режимов механизированной (полуавтоматической) и автоматической сварки под слоем флюса

4.1. Расчет режима сварки швов стыковых соединений

4.2. Расчет режима сварки угловых швов сварных соединений

5. Расчет режимов электрошлаковой сварки

5.1. Расчет режима электрошлаковой сварки проволочными электродами

5.2. Расчет режима электрошлаковой сварки пластинчатыми электродами

Заключение

Приложение А. Ориентировочные режимы ручной дуговой сварки

Приложение Б. Ориентировочные режимы полуавтоматической (механизированной) и автоматической сварки в среде углекислого газа

Приложение В. Ориентировочные режимы сварки под флюсом

Приложение Г. Ориентировочные режимы электрошлаковой сварки

6. Список используемой литературы

Введение

Методические указания по проведению практических занятий адресовано студентам очной и заочной формы обучения специальности 050501.65 Профессиональное обучение (машиностроение и технологическое оборудование), специализация Технологии и технологический менеджмент в сварочном производстве и предназначено для выполнения практических занятий и раздела «Расчет режимов сварки» курсовой работы (проекта).

В данном пособии приводятся расчеты режимов:

Ручной дуговой покрытыми электродами;

Механизированной и автоматической в среде углекислого газа;

Автоматической и полуавтоматической под флюсом;

Электрошлаковой сварки стыковых и угловых швов сварных соединений.

1. Общие положения

1. При описании раздела «Расчет режимов сварки» следует:

а) дать определение режима, принятого для изготовления сварной конструкции вида сварки;

б) перечислить основные и дополнительные параметры режима выбранного вида сварки;

в) для примера привести расчет режима сварки стыкового или углового шва сварной конструкции, для чего сделать эскиз этого соединения в соответствии с типом соединения по ГОСТу на выбранный вид сварки.

2. Основные типы соединений, выполняемых под флюсом, регламентированы ГОСТ 8713-79 – «Сварка под флюсом, соединения сварные. Основные типы, конструктивные элементы и размеры».

3. Основные типы соединений, выполняемых в среде защитных газов также регламентированы ГОСТ 14771-76 – «Швы сварных соединений. Электродуговая сварка в защитных газах. Основные типы и конструктивные элементы».

4. Основные типы соединений, выполняемых электрошлаковой сваркой регламентированы ГОСТ 15164-78 – «Электрошлаковая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры».

5. Основные типы соединений, выполняемых ручной дуговой сваркой регламентированы ГОСТ 5264-80 – «Ручная дуговая сварка. Соединения сварные. Основные типы и конструктивные элементы».

6. Результаты расчетов режимов сварки следует занести в таблицу.

2. Расчет режимов ручной дуговой сварки

Режимом сварки называют совокупность основных характеристик сварочного процесса, обеспечивающую получение сварных швов заданных размеров, формы и качества.

При ручной дуговой сварке основными параметрами режима являются

1. Диаметр электрода, d эл, мм.

5. Род тока.

6. Полярность тока (при постоянном токе).

2.1. Расчет режима сварки швов стыковых соединений

Швы стыковых соединений могут выполнятся с разделкой и без разделки кромок по ГОСТ 5264-80.

Диаметр электрода при сварке швов стыковых соединений выбирают в зависимости от толщины свариваемых деталей.

При выборе диаметра электрода при сварке стыковых швов в нижнем положении следует руководствоваться данными таблицы 1.

При сварке многослойных швов на металле толщиной 10 – 12 мм и более первый слой должен свариваться электродами на 1 мм меньше, чем указано в таблице 1, но не более 5 мм (чаще всего 4 мм), так как применение электродов больших диаметров не позволяет проникнуть в глубину разделки для провара корня шва.

При определении числа проходов следует учитывать, что сечение первого прохода не должно превышать 30-35 мм 2 и может быть определено по формуле:

F 1 = (6 – 8) · d эл, мм 2 , (1)

а последующих проходов – по формуле:

F с = (8 – 12) · d эл, мм 2 , (2)

где F 1 – площадь поперечного сечения первого прохода, мм 2 ;

F с – площадь поперечного сечения последующих проходов, мм 2 ;

Для определения числа проходов и массы наплавленного металла требуется знать площадь сечения швов.

Площадь сечения швов представляет собой сумму площадей элементарных геометрических фигур, их составляющих. Тогда площадь сечения одностороннего стыкового шва выполненного без зазора можно определить по формуле:

F 1 = 0,75 е · g , мм 2 , (3)

а при наличии зазора в соединении – по формуле:

(F 1 + F 2) = 0,75 е · g + S · в, мм 2 , (4)

где е – ширина шва, мм; g – высота усиления шва, мм; S – толщина свариваемого металла, мм; в – величина зазора в стыке, мм.

Площадь сечения стыкового шва с V–образной разделкой и с подваркой корня шва (см. рис. 1) определяется как сумма геометрических фигур:

F = F 1 + F 2 + F 3 + 2F 4 , (5)

Рисунок.1. Геометрические элементы площади сечения стыкового шва:

где S – толщина металла, мм; h – глубина проплавления, мм; c – величина притупления, мм; e – ширина шва, мм; e 1 – ширина подварки корня шва, мм; в – величина зазора, мм; g – высота усиления шва, мм; g 1 – высота усиления подварки корня шва, мм; α – угол разделки кромок.

Глубина проплавления определяется по формуле:

h = (S - c), мм. (6)

Площадь сечения геометрических фигур (F 1 + F 2) определяют по формуле 4, F 3 – по формуле 3, а площадь прямоугольных треугольников F 4 определяют по формуле:

F 4 = h · x/2, мм 2 , (7)

где x = h · tg α/2;

F 4 = (h 2 ·tg α/2) /2, мм 2 , (8)

Но рассматриваемая нами площадь V–образного шва состоит из двух прямоугольных треугольников, поэтому:

2F 4 = h 2 · tg α/2, мм 2 . (9)

Подставляя значения элементарных площадей в формулу (5), получим:

F н = 0,75 · е · g +в · S + 0,75 e 1 · g 1 + h 2 · tg α/2, мм 2 . (10)

При X–образной разделке площадь наплавленного металла подсчитывают отдельно для каждой стороны разделки.

Зная общую площадь поперечного сечения наплавленного металла (F н), а также площадь поперечного сечения первого (F 1) и каждого из последующих проходов шва (F с), находят общее число проходов «n» по формуле:

n = (F n -F 1 /F с) + 1. (11)

Полученное число округляют до ближайшего целого.

Расчет сварочного тока при ручной дуговой сварке производится по диаметру электрода и допускаемой плотности тока по формуле:

I св = F эл · j = (π · d эл 2 / 4) · j , А, (12)

где π – 3,14;

j – допустимая плотность тока, А/мм 2 ;

F эл – площадь поперечного сечения электрода, мм 2 ;

d эл – диаметр электрода, мм.

Сварочный ток определяется для сварки первого прохода и последующих проходов только при сварке многопроходных швов.

Допустимая плотность тока зависит от диаметра электрода и вида покрытия: чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения (см. табл. 2).

Таблица 2 - Допустимая плотность тока в электроде при ручной дуговой сварке

Напряжение на дуге при ручной дуговой сварке изменяется в пределах 20-36 В и при проектировании технологических процессов ручной дуговой сварки не регламентируется.

Поэтому напряжение на дуге следует принять какое – то конкретное.

Скорость перемещения дуги (скорость сварки) следует определять по формуле:

V св = L н · I св / γ · F н · 100, м/ч, (13)

где L н – коэффициент наплавки, г/А час; (см. табл. 3)

γ – плотность наплавленного металла за данный проход, г/см 3 (7,8 г/см 3 – для стали);

F н – площадь поперечного сечения наплавленного металла, мм 2 .

Скорость перемещения дуги (скорость сварки) определяют для первого прохода и последующих проходов только при сварке многопроходных швов. Результаты расчета режима сварки стыкового шва следует занести в табл. 3.

Таблица 3 - Режимы сварки стыкового шва и его размеры

Расчет режима сварки угловых швов

При сварке угловых швов диаметр электрода выбирается в зависимости от катета шва.

Примерное соотношение между диаметром электрода и катетом шва при сварке угловых швов приведено в табл. 4.

При ручной дуговой сварке за один проход могут свариваться швы катетом не более 8 мм.

При больших катетах швов сварка производится за два и более проходов Максимальное сечение металла, наплавленного за один проход, не должно превышать 30 – 40 мм 2 (Fmax = 30÷40 мм 2).

Площадь поперечного сечения углового шва, которую необходимо знать при определении числа проходов, рассчитывают по формуле:

F н = K у ·К 2 / 2 мм 2 , (14)

где F н – площадь поперечного сечения наплавленного металла, мм 2 ;

К – катет шва, мм;

К у – коэффициент увеличения, который учитывает выпуклость шва и зазоры.

Для наиболее часто встречающихся угловых швов с катетом 2 – 20 мм, коэффициент К у выбирают по табл. 5.

Определив примерную площадь сечения углового шва и зная максимально возможную площадь сечения, получаемую за один проход, находят число проходов «n» по формуле:

n = F n / (30-40). (15)

Полученное дробное число округляют до ближайшего целого.

Силу сварочного тока определяют по формуле:

I св = (π · d 2 эл /4) · j, (16)

где π – 3,14;

d эл – диаметр электрода, мм;

j – допустимая плотность тока, А/мм 2 .

Напряжение на дуге при ручной дуговой сварке изменяется в пределах 20 – 38 В. Следует принять какое - то конкретное.

Скорость сварки определяют по формуле:

V св = L н · I св / γ · F н ·100, м/ч, (17)

где L н – коэффициент наплавки, г/А час;

γ – плотность наплавленного металла, г/см 3 (7,8 г/см 3 – для стали);

F н – площадь поперечного сечения наплавленного металла углового шва, см 2 ;

Значения коэффициентов наплавки для различных марок электродов приведены в табл. 6.

Таблица 6 - Коэффициенты наплавки для различных марок электродов

Результаты расчетов режима сварки угловых швов следует занести в табл. 7.

Таблица 7 - Режимы сварки угловых швов

Ориентировочные режимы ручной дуговой сварки приведены в приложении А.

3. Расчет режимов сварки в среде углекислого газа

Сварка в среде углекислого газа широко применяется при изготовлении конструкций из углеродистых, низколегированных, теплоустойчивых сталей, среднелегированных, хромоникелевых и аустенитных сталей.

Основные типы соединений, выполняемые в среде углекислого газа, регламентированы ГОСТ 14771-76.

Основными параметрами режима сварки в среде углекислого газа являются:

1. Диаметр электродной проволоки, d эл, мм.

2. Сила сварочного тока, I св, А.

4. Скорость сварки, V св, м/ч.

5. Расход защитного газа, q r .

Дополнительными параметрами режима являются:

6. Род тока.

7. Полярность при постоянном токе.

3.1. Расчет режима сварки в среде углекислого газа швов стыковых соединений

Швы стыковых соединений могут выполняться как с разделкой, так и без разделки кромок.

Диаметр электродной проволоки (d эл) выбирается в зависимости от толщины свариваемых деталей. При выборе диаметра электродной проволоки при сварке швов в нижнем положении следует руководствоваться данными таблицы 8

Таблица 8 - Выбор диаметра электродной проволоки для сварки швов стыковых соединений

Толщина металла, мм

Форма подготовки кромок

Зазор в стыке, мм

Диаметр электродной проволоки, мм

Число проходов

Встык, без разделки кромок

V – образная односторонняя

V – образная двусторонняя

Сила сварочного тока, (I св) выбирается в зависимости от глубины провара (h) и определяется по табл. 9.

Таблица 9 - Определение сварочного тока в зависимости от глубины провара

Глубина провара ( h ) при сварке с первой стороны определяется по формуле:

h = S / 2 ± 1 мм, (18)

где S – толщина свариваемых деталей, мм.

Напряжение на дуге ( U д ) выбирается по табл. 10.

Таблица 10 - Напряжение на дуге в зависимости от силы сварочного тока

Скорость сварки (V св) определяют по табл. 11.

Таблица 11 - Определение скорости сварки в зависимости от диаметра электродной проволоки

Расход углекислого газа (q r) выбирают по данным табл.12 в зависимости от марки свариваемого металла и толщины металла.

Таблица 12 - Расход углекислого газа в зависимости от толщины свариваемого металла стыкового соединения

Результаты расчета режима сварки стыкового шва следует занести в табл. 13.

Таблица 13 - Режимы сварки стыкового шва в среде углекислого газа

3.2. Расчет режима сварки в среде углекислого газа угловых швов сварных соединений

При сварке угловых швов диаметр электродной проволоки выбирается в зависимости от толщины металла по табл. 14.

Таблица 14 - Выбор диаметра электродной проволоки для сварки угловых швов

Напряжение на дуге (U д), силу тока (I св), скорость сварки (V св) определяют по номограмме (рис. 2).

Рисунок. 2. Номограмма для определения режимов полуавтоматической сварки в среде углекислого газа угловых швов диаметром электродной проволоки 1,6 мм

Чтобы определить режим сварки, обеспечивающий необходимый катет шва, выбирают точку, лежащую на линии заданного катета (Кр), в области, ограниченной штриховыми линиями, в зависимости от того, какой шов требуется получить: вогнутый, плоский или выпуклый.

Из этой точки провести линии на ось ординат, где получим значение сварочного тока, и ось абсцисс, где получим значение скорости сварки.

Напряжении на дуге берется в ближайшем прямоугольнике.

Расход углекислого газа выбирается по табл. 15.

Таблица 15 - Расход углекислого газа в зависимости от толщины свариваемого углового соединения

Результаты определения режимов сварки угловых швов следует занести в табл. 16.

Таблица 16 - Режимы сварки углового шва в среде углекислого газа

Ориентировочные режимы механизированной (полуавтоматической) и автоматической сварки приведены в приложении Б

4. Расчет режимов механизированной (полуавтоматической) и автоматической сварки под слоем флюса

Конструктивные элементы подготовки кромок и виды сварных соединений (стыковые, угловые, тавровые, нахлесточные) для автоматической и механизированной сварки под слоем флюса регламентированы ГОСТ 8713-79.

Основными параметрами режима автоматической и механизированной сварки под слоем флюса, оказывающим влияние на размеры и форму шва, являются:

1. Диаметр электродной (сварочной) проволоки, d эл, мм.

2. Сила сварочного тока, I св, А.

4. Скорость подачи электродной проволоки,V п.п. , м/ч.

5. Скорость сварки, V св, м/ч.

Дополнительными параметрами режима являются:

6. Род тока.

7. Полярность (при постоянном токе).

8. Марка флюса.

Расчет режима сварки швов стыковых соединений

Расчет режима сварки начинают с того, что задают требуемую глубину провара при сварке с первой стороны, которая устанавливается равной:

h = S/2 ± (1-3), мм, (19)

где S – толщина металла, мм.

Силу сварочного тока , необходимую для получения заданной глубины проплавления основного металла, рассчитывают по формуле:

I св = (80-100)·h, А. (20)

Диаметр сварочной проволоки рассчитывают по формуле:

d эл = 2I св / j·π , мм, (21)

π – 3,14;

j – плотность тока, приближенные значения которой приведены в табл. 17.

Таблица 17 - Допускаемая плотность тока в электродной проволоке при автоматической сварке стыковых швов

Напряжение на дуге принимают для стыковых соединений в пределах 32-40 В. Большему току и диаметру электрода соответствует большее напряжение на дуге. Выбрать конкретное напряжение.

Определяют коэффициент наплавки (L Н), который при сварке постоянным током обратной полярности L Н = 11,6±0,4 г/А ч, а при сварке на постоянном токе прямой полярности и переменном токе по формуле:

L = A + B · I св /d эл, г/А·ч, (22)

где I св – сила сварочного тока, А;

d эл - диаметр электродной проволоки, мм;

А, В – коэффициенты, значения которых приведены в табл. 18.

Таблица 18 - Значения коэффициентов А и В

Скорость сварки электродной проволокой диаметром 4-6 мм определяют по формуле:

V = (20-30) · 10 3 / I св, м/ч; (23)

а электродной проволокой диаметром 2 мм по формуле

V = (8-12) · 10 3 / I св, м/ч. (24)

Скорость подачи сварочной проволоки (V n . n .) определяют по формуле:

V п.п. = 4· L Н · I св / π · d эл 2 , м/ч, (25)

где L Н – коэффициент наплавки, г/А·ч; π – 3,14;

γ – удельный вес наплавленного металла, г/см 3 (7,8 г/см 3 – для стали);

I св – сила сварочного тока, А.

Результаты, расчетов режима сварки стыковых соединений следует занести в табл. 19.

Таблица 19 - Режимы сварки стыкового шва

4.2. Расчет режима сварки угловых швов сварных соединений

Расчет режима сварки ведется в следующей последовательности:

Зная катет шва (К), определяют площадь поперечного сечения наплавленного металла, которая для шва без выпуклости высоты усиления определяется по формуле:

Мм 2 , (26)

где К – катет шва, мм;

а для шва с выпуклостью (с высотой усиления) – по формуле:

, мм 2 , (27)

где g – выпуклость углового шва величины усиления, мм.

Выбирают диаметр электродной проволоки . Следует иметь в виду, что угловые швы с малым катетом (К=3-4мм) можно получить при использовании проволоки диаметром 2 мм; швы с катетом (К=5-6мм), получают при сварке проволокой диаметром 4-5 мм. Сварка диаметром более 5 мм не обеспечивает необходимого провара вершины углового шва и поэтому практического применения не находит, максимальный катет углового шва, который можно получить за один проход, независимо от диаметра электродной проволоки, равен 10 мм.

Для принятого диаметра электрода подбирают плотность тока по таблице 21, а затем определяют силу сварочного тока по формуле:

I св = π · d эл 2 / 4 · j, А, (28)

где j – допускаемая плотность тока в электродной проволоке при сварке угловых швов (табл. 20); π – 3,14;

d эл – диаметр электродной проволоки, мм.

Таблица 20 - Допускаемая плотность тока в электродной проволоке при сварке угловых швов

Затем по рис. 3, зная величину сварочного тока и диаметр электродной проволоки, устанавливают оптимальное напряжение на дуге (U Д).

При этом следует выбирать значения напряжения на дуге ближе к нижнему пределу диапазона оптимальных напряжений.

Рисунок. 3. Зависимость Ψ пр ст величины сварочного тока и напряжения на дуге. Ток переменный. Флюс марки ОСЦ-45:а d эл = 2мм; б d эл =4 мм; в d эл = 5 мм; г d эл = 6 мм.

Зная площадь сечения наплавленного металла за один проход определяют скорость сварки по формуле:

V = L H · I св / F H · γ, м/ч, (29)

где L H - коэффициент наплавки электродной проволоки, г/А·час;

I св – сила сварочного тока, А;

F Н – площадь наплавленного металла, см 2 ;

Y – удельный вес наплавленного металла, г/см 3 (7,8 г/см 3 – для стали).

Скорость подачи электродной проволоки (V n . n .) определяется по формуле:

V п.п. = 4 · L H · I св / F H · γ , м/ч, (30)

где L H -коэффициент наплавки, г/А час;

I св - сила сварочного тока, А;

d эл – диаметр электродной проволоки, мм;

γ – удельный вес наплавленного металла, г/см 3

(7,8 г/см 3 – для стали).

Результаты расчета режима сварки и размеров угловых швов следует свести в табл. 21.

Таблица 21 - Режимы сварки углового шва


Расчет режимов электрошлаковой сварки

При электрошлаковой сварке электродом может служить не только проволока, но и электроды в виде пластин, стержней.

Пластинчатые электроды применяются главным образом при большой толщине свариваемых деталей и небольшой высоте швов жидкого металла и перегретого шлака. Электрошлаковая сварка может быть осуществлена одним проволочным электродом диаметром 2 или 3 мм без поперечных колебаний и с постоянной скоростью подачи проволоки в шлаковую ванну при сварке металла толщиной до 50 мм. При сварке больших толщин применяют двух-, трех- и многоэлектродную сварку проволочными электродами без поперечных или с поперечными колебаниями.

Электрошлаковой сваркой можно выполнить любой тип соединений, регламентированных ГОСТ 15164-79.

Основными параметрами режима электрошлаковой сварки являются:

1. Диаметр электродной проволоки, d эл.

2. Сила сварочного тока, I св, А.

4. Скорость сварки, V св, м/ч.

5. Скорость подачи электрода, V п.э. , м/ч.

6. Скорость поперечных перемещений электрода, V п.п. , м/ч.

Дополнительными параметрами режима являются:

7. Сухой вылет электрода, l с, сек.

8. Время выдержки у ползуна при сварке с поперечными колебаниями,

9. Число сварочных проволок-электродов, n эл.

10. Величина зазора в стыке, B, мм.

11. Глубина шлаковой ванны, h шл, мм.

12. Недоход электрода до ползуна.

13. Марка флюса.

14. Расстояние между электродами, l э, мм.

Электрошлаковую сварку можно выполнить проволочными и пластинчатыми электродами в зависимости от толщины свариваемых деталей.

5.1. Расчет режима электрошлаковой сварки проволочными электродами

По толщине металла устанавливаются зазор в стыке , пользуясь рекомендациями таблицы 1, а затем выбирают диаметр проволочного электрода . Наиболее рациональное применение проволоки диаметрами 2 и 3 мм, так как увеличение диаметра проволоки приводит к росту ширины провара и уменьшению глубины шлаковой ванны.

Число проволочных электродов (n эл) выбирают по таблице 22.

Расстояние между электродами l э при сварке без поперечных колебаний принимают равным 30-50 мм, при сварке с поперечными колебаниями – 50-180 мм. Выбрать конкретную величину. При числе электродов более трех, количество электродов n эл определяют по формуле:

n эл = S / l э, (31)

l э – расстояние между электродами, мм.

Сухой вылет электрода – расстояние от нижней точки мундштука до поверхности шлаковой ванны (l с), находится в пределах 60-70 мм. Выбрать конкретную величину.

Силу сварочного тока (I св) на одну сварочную проволоку выбирают в зависимости от отношения толщины свариваемого металла к числу электродных проволок по формуле:

I св = A+B · S/n эл, (32)

где S – толщина металла, мм;

n эл – число проволочных электродов;

A – коэффициент, равный 220-280;

B – коэффициент, равный 3,2-4,0.

Сварочный ток с учетом количества проволок определяется по формуле:

I св п = I св · n эл . (33)

Напряжение шлаковой ванны (U ш. в.) определяется по формуле:

U ш.в. = 12 + 125+S/(0,075·n эл.) (34)

где S – толщина свариваемого металла, мм;

Скорость подачи проволочных электродов (V п.э.) определяют по формуле:

V н.э. = I св / (1,6-2,2), (м/ч) (35)

где I св – сила сварочного тока, А.

Скорость сварки (V св) определяют по формуле:

V св = n эл ·L H ·I св n / γ·B·S·K у, (36)

где n эл – количество проволочных электродов;

L н – коэффициент наплавки, г/А ч (L н = 30 ÷ 35 г/А ч);

I св – сила сварочного тока, А;

γ – плотность наплавленного металла, г/см (7,8 см 3 – для стали);

в – величина зазора в стыке, мм;

S – толщина свариваемого металла, мм;

К у – коэффициент увеличения, учитывающий выпуклость шва;

(К у = 1,05 – 1,10)

Глубина шлаковой ванны ( h шл ), от которой зависит устойчивость процесса и ширина провара, определяется по формуле:

h шл = I n св ·(0,0000375·I св – 0,0025)+ 30 (мм), (37)

где I св – сила сварочного тока, А;

I n св – сила сварочного тока с учетом количества проволок, А.

Скорость поперечных перемещений электрода, U п.п. определяют по формуле:

U n . n . = 66-0,22 ·S/n эл, (м/ч) (38)

где S – толщина свариваемого металла, мм;

n эл – количество проволочных электродов.

Время выдержки у ползуна ( t в ) определяют по формуле:

t в = 0,0375 · S/n эл. +0,75 (сек) (39)

Недоход электрода до ползунов принимают равным 5-7 мм.

Результаты расчетов режима электрошлаковой сварки проволочным электродом следует занести в табл. 23.

Таблица 23 - Режимы электрошлаковой сварки проволочным электродом

5.2. Расчет режимов электрошлаковой сварки пластинчатыми электродами.

Электрошлаковая сварка пластинчатыми электродами применяется для соединения массивных изделий с длиной швов до 1 – 1,5 м. При сварке пластинчатыми электродами сечение деталей в месте стыка должно иметь прямоугольную форму.

Число пластинчатых электродов ( n эл ) определяют по формуле:

n эл = S/(70-100), (40)

где S – толщина свариваемого металла, мм.

При толщине деталей до 150 мм допускается сварка одним пластинчатым электродом.

Ширину каждого из электродов ( В ) определяют по формуле:

(41)

где S – толщина свариваемого металла, мм.

n эл – число пластинчатых электродов.

Число фаз ( n ф ) выбирают исходя из расчета более равномерной загрузки фаз. При трех и более электродах число фаз, n ф = 3.

Допустимый удельный ток ( i доп ) определяют по формуле:

i доп = (I ф ·n эл)/(S·n ф), (А/мм) (42)

где I ф – допустимый сварочный ток на каждую фазу, А;

n эл - количество пластинчатых электродов;

S – толщина свариваемого сечения, мм;

n ф – число фаз.

Допустимый сварочный ток на каждую фазу I ф принимается равным номинальному току сварочного трансформатора. При сварке аппаратом А-480 с трансформатором ТШС – 3000-3, I ф = 3000А.

Минимальную толщину ( S min ) пластинчатого электрода находят исходя из условий заполнения разделки. Минимальную толщину электрода в зависимости от отношения H/L определяют по графику, приведенному на рис. 4.

Рисунок. 4. Зависимость между H / L и минимальной толщиной электрода:

где H – рабочий ход суппорта сварочного аппарата, мм (для аппарата А-480 H = 2300мм);

L – высота свариваемого сечения (длина шва), включая высоту кармана и выводных планок, которые находятся в пределах 150-200мм.

Найдя по графику минимальную толщину электрода, округляют до ближайшего целого и принимают толщину электрода, δ.

Зазор между кромками свариваемых деталей ( в) определяют по формуле:

(мм), (43)

где δ – толщина пластинчатого электрода, мм.

Величину сварочного тока I св на каждой фазе определяют по формуле:

I св = n ф ·В·i доп (А), (44)

где n ф – число фаз;

B – ширина электрода, мм;

i доп – удельный допустимый ток, (А/мм).

Глубину шлаковой ванны ( h шл ) в соответствии с удельным допустимым сварочным током, (i доп) находят по рис. 5.

Рисунок. 5. График для выбора S . ( V эл , h шв , U шв )

В процессе сварки допустимы отклонения от найденного значения не более ±3мм.

Напряжение на шлаковой ванне ( U ш.в . ) определяют по графику рисунка 5 по толщине пластинчатого электрода и скорости подачи электрода.

Для аппарата А-480 скорость подачи электрода, V п.э. = 1,03м/ч. В процессе сварки допустимы отклонения от найденного значения не более ± 1В.

Напряжение холостого хода ( U х.х. ) сварочного трансформатора зависит от степени жесткости характеристики источника питания.

При применении трансформатора ТШС – 3000- 3 следует принимать:

U х.х. = (U шв +2) · (В) при I св ≤ 1500А (45)

U х.х. = (U шв +4) · (В) при I св > 1500А

Полную длину электрода ( Z ) определяют по формуле:

Z= 1,2 · L (1+B+2-δ/δ)+T (мм) (46)

где L – высота свариваемого сечения (длина шва), включая высоту кармана и выводных планок, мм;

В – зазор между свариваемыми кромками, мм;

δ – толщина пластинчатого электрода, мм;

Т – технологический припуск для крепления электродов и токоподвода (Т = 300 мм).

Результаты расчетов режима электрошлаковой сварки пластинчатым электродом следует внести в табл. 24.

Таблица 24 - Режимы электрошлаковой сварки пластинчатым электродом

Ориентировочные режимы электрошлаковой сварки низкоуглеродистых, углеродистых, низколегированных, теплоупрочненных сталей и поковок из титана приведены в приложении Г.

Заключение

Методические указания содержат подробную последовательность определения режимов различных видов сварки стыковых и угловых швов, с приведением необходимых формул, рисунков, графиков, номограмм.

В приложениях к указаниям приведены ориентировочные режимы сварки.

Полагаем, что данные указания будут успешно использованы при самостоятельной подготовке студентов к практическим работам или при выполнении раздела расчета режимов сварки, курсового (дипломного) проекта или работы.

Приложение А

Режимы ручной дуговой сварки стыковых швов без скоса кромок при односторонней и двусторонней сварке

Режимы ручной дуговой сварки V -образных стыковых швов

Ориентировочные режимы ручной дуговой сварки стыковых швов стали марки 30ХГС

Режимы ручной дуговой сварки стыковых и угловых соединений электродами ОММ-5

Приложение Б

Режимы полуавтоматической (механизированной) и автоматической сварки в углекислом газе низкоуглеродистых и низколегированных сталей

Оптимальные режимы сварки низкоуглеродистых и низколегированных сталей порошковыми проволоками

(нижнее положение)

Механические свойства швов при сварке низкоуглеродистых сталей порошковыми проволоками

Примерные режимы аргонодуговой сварки вольфрамовым электродом высоколегированных сталей

Примечание: Диаметр присадочной проволоки 1,6…2мм; ток постоянный прямой полярности.

Ориентировочные режимы аргонодуговой сварки встык плавящимся электродом высоколегированных сталей в нижнем положении

Ориентировочные режимы дуговой сварки высоколегированных сталей без разделки кромок плавящимся электродом в углекислом газе


Ориентировочные режимы аргонодуговой сварки алюминия трехфазной дугой

Толщина металла, мм

Способ сварки

Диаметр, мм

(V св ·10 3 , м/с)

Примечание

Вольфрамового электрода

Присадочной проволоки

Сварка на весу

Механизированная

Сварка без разделки кромок на подкладке

Механизированная

Механизированная

Примечание. Расход аргона 15…20 л/мин

Ориентировочные режимы аргонодуговой сварки вольфрамовым электродом магниевых сплавов

Объединение

Толщина листов, мм

Сварочный ток I св, А

Скорость сварки, м/ч

Присадочная проволока

Расход аргона, л/мин

Механизированная сварка

В стык, без разделки, один проход

Ручная сварка

Встык без разделки, один проход

Встык, с разделкой, три прохода


Режимы аргонодуговой сварки вольфрамовым электродом, рекомендуемые для листов титана


Режимы сварки титана и его сплавов плавящимся электродом в защитных газах

Приложение В

Режимы сварки под флюсом низкоуглеродистых и низколегированных сталей

Толщина металла или шва, мм

Подготовка кромок

Тип шва и способ сварки

Диаметр электропроводной проволоки, мм

Сила тока, А

Напряжение дуги, В

Скорость сварки, м/ч

А. Автоматическая сварка стыковых швов

Без разделки, зазор

V- образные

Односторонний

Двусторонний

Односторонний

1й проход 750…800

2й проход

Б. Автоматическая сварка угловых швов

Без разделки

Наклонным электродом

В лодочку

Примечание. Ток постоянный обратной полярности


Режимы сварки титана плавящимся электродом под флюсом

АНТ-1(скорость сварки 50м/ч)

Режимы однопроходной сварки по слою флюса одиночным электродом на формирующей подкладке алюминия и его сплава

Приложение Г

Режимы ЭШС углеродистых, низколегированных, теплоупрочненных сталей для прямолинейных стыков

V п.п. , м/ч

Сварочная проволока

Подогрев, 0 С

20, М16С, Ст3, 22К, 25Л, 09Г2,

25С, 25ГСЛ, 10ХСНД, 10ХГСНД

Св-08ХГ2СМ

АН-8М, АН-8

35, 35Л, Ст5, 20Х2МА

Св-08ХГ2СМ

Св-08Х3Г2СМ

АН-8М, АН-8, АН-22

Св-10ХГН2МЮ

АН-8, АН-8М, АН-22

Ориентировочные режимы электрошлаковой сварки низкоуглеродистых сталей

Толщина металла, мм

Сила тока на один электрод, А

Напряжение сварки, В

Число электродов

Диаметр (сечение) электро-дов, мм

Расстояние между электродами

Скорость, м/ч

подачи электродов

Проволочный электрод

Технология сварки углеродистых сталей

Режимы электрошлаковой сварки поковок из титана пластинчатым электродом

5. Список используемой литературы:

Основная:

1. Думов С.И. Технология электрической сварки плавлением. - М.: Машиностроение, 1987. - 347 с.

2. Думов С.И., «Технология электрошлаковой сварки плавлением». – М.: Машиностроение, - 1987г.

3. Маслов В.И. Сварочные работы. Изд-во М., 1999. - 246 с.

4. Окерблом Н.О., Демянцевич В.П., Байкова И.П., Проектирование технологии изготовления сварных конструкций. – Ленинград: 1983г.

5. Потапьевский А.Г., «Сварка в защитных газах плавящимся электродом». – М.: Машиностроение. – 1974.- 237 с.

6. Сварка и свариваемые материалы: В 3-х т. Т. 1. Свариваемость материалов / Под. ред. Э.Л. Макарова. – М.: Металлургия, 1991. – 528с.

Т.2 Технология и оборудование / Под. ред. В.М. Ямпольского. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1996. – 574с.

Дополнительная:

1. ГОСТ 5264-80 – Ручная дуговая сварка соединения сварные. Основные типы и конструктивные элементы.

2. ГОСТ 8713-79 – Сварка под флюсом, соединения сварные. Основные типы, конструктивные элементы и размеры.

3. ГОСТ 14771 – 76 – Швы сварных соединений. Электродуговая сварка в защитных газах. Основные типы и конструктивные элементы.

4. ГОСТ 15164-78 – Электрошлаковая сварка соединения сварные. Основные типы, размеры конструктивных элементы и размеры.

Независимо от способа сварки необходимо соблюдать следующие условия, которые позволяют получить сварное соединение с необходимой трудоспособностью:

1) специальная подготовка кромок;

2) высокое качество подготовки и сборки под сварку;

3) обязательная зачистка поверхностей, которые свариваются.

Режимом сварки называют совокупность основных характеристик сварочного процесса, которые обеспечивают получение сварных швов заданных размеров, формы и качества.

Первым условием расчета режимов сварки является получение швов с оптимальными размерами и формой, которые обеспечивают высокую технологическую прочность и высокие эксплуатационные характеристики.

К основным параметрам дуговой сварки относятся: сварочный ток I св, напряжение дуги U д и скорость сварки V св. Каждый из этих параметров как отдельно, так и в совокупности с другими, влияют на величину тепло вложения а, значит, и на геометрические размеры шва, коэффициент формы провара, коэффициент формы шва и участие основного и электродного металла в формировании шва.

Оптимальные параметры режима сварки обеспечивают необходимые геометрические размеры сварных швов и необходимые соотношения между основным и электродным металлом, при котором достигаются заданные механические свойства металла шва.

Шов №1:

Тип шва: Т1-?5 тавровый, односторонний, без скоса кромок;

Марка стали: ст3сп5,

Рисунок 4.1. - Разделка кромок для шва Т1 по ГОСТ 14771-76

Определяем площадь наплавленного металла по формуле:

F н =

F н

Задаём диаметр электродной проволоки dэ.пр.=1,6мм, плотность тока j=175 А/мм 2

Сила сварочного тока при сварке в среде защитных газов определяется в зависимости от диаметра электрода, которым мы изначально задаемся, и допустимой плотностью тока:

Для принятого диаметра электрода и силы сварочного тока определяем оптимальное напряжение дуги:

Скорость сварки может быть определена по формуле:

,

где

g=7,8

F Н1пр

Вылет электрода находится по формуле:

Выбираем L = 18 мм .

Скорость подачи проволоки определяется по формуле:

Шов №2:

Способ сварки: полуавтоматическая сварка в среде защитных газов;

Тип шва: Т7, тавровый, односторонний, со скосом одной кромки, с подварочным швом;

Марка стали: ст3сп5;

Рисунок 4.2 - Разделка кромок для шва Т7 по ГОСТ 14771-76

1. Определим катет шва по формуле:

k = 0,15 * s - 0,5s = 0,15 * 20 - 0,5 * 20 = 3 - 10мм,

Принимаем k = 5 мм

2. Определим площадь наплавленного металла:


Площадь наплавленного металла при полуавтоматической сварке составляет 40-50 мм 2. Выбираем F н = 40 мм 2 .

3. Площадь наплавленного металла подварочного и корневого шва:

Конструктивно принимаем =10 мм 2 .

4. Зная общую площадь поперечного сечения металла, наплавленного при первом и последующих проходах, определим количество проходов:

Задаём диаметр электродной проволоки dэ.пр. = 1,6 мм, плотность тока j = 175 А/мм 2

5. Определяем силу сварочного тока:

6. Определяем оптимальное напряжение дуги:

7. Определяем скорость сварки:

где - коэффициент наплавки, определяется в зависимости от тока сварки и диаметра проволоки;

g=7,8 - плотность наплавленного металла;

F Н1пр - площадь поперечного сечения наплавленного металла за данный проход, см 2 .

8. Вылет электрода находится по формуле:

Выбираем L = 18 мм .

9. Определяем скорость подачи сварочной проволоки:

Определяем режимы сварки для выполнения подварочного и корневого шва:

1. Определяем силу тока:

Сила тока должна быть меньше, чем при сварке основного шва, чтоб избежать прожогов.

2. Определяем напряжение на дуге:

3. Определяем скорость сварки:

4. Определяем скорость подачи сварочной проволоки:

Шов №3:

Способ сварки: полуавтоматическая сварка в защитных газах.

Тип шва: Т6, тавровый, односторонний, со скосом одной кромки.

Марки стали: ст3сп5.

Рисунок 4.3 - Разделка кромок для шва Т6 по ГОСТ 14771-76

1. Определяем площадь наплавленного металла по формуле:

При этом следует иметь в виду, что максимальное поперечное сечение металла, наплавленного за один проход при полуавтоматической сварке не должно превышать 40 - 50 мм 2 . Принимаем:

2. Зная общую площадь поперечного сечения наплавленного металла и площади поперечного сечения наплавленного при первом и каждом последующем проходах, найдём число проходов:

Режимы сварки для шва Т6 такие же, как и для сварки шва Т7.

Таблица 18 - Конструктивные элементы шва ГОСТ14771 - 76

Основными параметрами режима механизированной сварки, оказывающими существенное влияние на размеры и форму швов являются:

Диаметр электродной проволоки, мм;

Значение силы тока, А;

Напряжение дуги, В;

Скорость сварки, м/ч;

Скорость подачи проволоки, м/ч;

Погонная энергия сварки, Дж/мм;

Обеспечение термического цикла, обеспечивающего оптимальные свойства зоны термического влияния и металла шва.

При определении режима сварки необходимо выбрать такие его параметры, которые обеспечат получение швов заданных размеров, формы и качества.

Для расчёта режима сварки будет взят один основной шов. Режим остальных швов выбирается по таблицам. В качестве основного, берётся шов №4 ГОСТ 14771?76 - С15 ? УП.

При сварке проволокой диаметром 1,6…2.0мм площадь первого прохода 20…40мм 2 , площадь второго прохода 40…60мм 2 , площадь последующих проходов составляет 40…100мм 2 согласно .

Определим силу сварочного тока.

где диаметр электродной проволоки, 1,6мм;

Плотность тока (160А/мм 2).

Сила сварочного тока для первого прохода

I св = 270 А.

Для принятого диаметра электрода и силы сварочного тока определим оптимальное напряжение на дуге:

Зная сварочный ток, диаметр электрода и напряжение на дуге, определим коэффициент формы провара по формуле:

где - коэффициент, величина которого зависит от рода и полярности тока. =0,92 при плотности тока 160А/мм 2 при сварке постоянным током обратной полярности.

Ш П = - 4,72+17,6 ?10 -2 ?ј - 4,48 ?10 -4 ?ј 2 (15)

Ш П = - 4,72+17,6 ?10 -2 ?160 - 4,48 ?10 -4 ?160 2 = 12,4%

Определим скорость сварки для первого прохода. F = 30мм 2

V cв = 0,1956 см/с = 7,04 м/ч

F n =F 0 n - F н, (18)

F н - площадь первого прохода.

Режим сварки для второго прохода.

Напряжение на дуге;

Коэффициент расплавления;

бр = 9,4г/Ач

Коэффициент наплавки;

б н = 8,23г/Ач

Скорость сварки второго прохода F = 40мм 2 ;

V св = 0,2344см/с = 8,44м/ч

Скорость сварки, напряжение на дуге, коэффициент расплавления будут такиеже, как для второго прохода. Площадь сечения шва F = 90мм 2;

V св = 0,0869см/с = 3,13м/ч

V св = 0,1186см/с = 4,27м/ч

Расчет режимов сварки в смеси газов Ar + СО2

Таблица 19 - Оптимальные режимы ИДС в смеси газов Ar+25СО 2 с использованием проволоки Св-08Г2С диаметром 1.6мм согласно

При сварке проволокой диаметром 1.6…2.0мм площадь первого прохода 20…40мм 2 , площадь второго прохода 40…60мм 2 , площадь последующих проходов составляет 40…100мм 2 согласно .

Определим коэффициент формы провара по формуле:

где - коэффициент, величина которого зависит от рода и полярности тока. = 0,92 при плотности тока 160 А/мм 2 при сварке постоянным током обратной полярности.

Для определения скорости сварки необходимо найти значение коэффициента наплавки б Н по формуле:

где ш П - коэффициент потерь, зависящий от плотности тока в электроде.

ш П = 2,9%[таб.10].

Величину коэффициента расплавления рассчитываем по формуле:

где l - вылет электрода, составляющий 10…20мм. Приняв l = 15мм, получим;

Определим скорость сварки для первого прохода. F = 30мм 2 ;

V cв = 0,3015 см/с = 10,85 м/ч

При определении количества проходов, требуемых для заполнения разделки, необходимо иметь в виду, что максимальное сечение одного прохода обычно не превышает 100мм 2 .

F n =F 0 n - F н,

где F 0 n - площадь поперечного сечения наплавленного металла;

F н - площадь первого прохода;

Режим сварки последующих проходов и их число выбирают из условий заполнения разделки и плавного спряжения шва с основным металлом.

Режим сварки для второго прохода;

Напряжение на дуге;

Коэффициент расплавления;

бр = 9,37г/Ач

Коэффициент наплавки;

б н = 9,1г/Ач

Скорость сварки;

V св = 0,2448см/с = 8,8м/ч

Режим сварки для третьего прохода;

Скорость сварки, напряжение на дуге, коэффициент расплавления будут такиеже, как для второго прохода. Площадь сечения шва F = 90мм 2 ;

V св = 0,1116см/с = 4,018м/ч

Для последнего прохода F = 66мм 2 , тогда;

V св = 0,1522см/с = 5,48м/ч

Параметрами режима сварки в углекислом газе являются диаметр используемой проволоки, величина сварочного тока, скорость подачи электродной проволоки, напряжение дуги, скорость сварки, расход углекислого газа, вылет электрода.

В настоящее время сварка в углекислом газе выполняется постоянным током обратной полярности (плюс на электроде). Переменный и постоянный ток прямой полярности пока еще не применяется из-за недостаточной устойчивости процесса и неудовлетворительного формирования и качества сварного шва.

Режим сварки в углекислом газе выбирают в зависимости от толщины и марки свариваемой стали, типа соединения и формы разделки кромок, положения шва в пространстве, а также с учетом обеспечения стабильного горения дуги, которое ухудшается с понижением сварочного тока.

Следует также помнить, что с увеличением напряжения дуги при неизменном токе возрастает ширина шва и несколько уменьшается величина его усиления, повышается разбрызгивание жидкого металла. Чрезмерное увеличение напряжения дуги может привести к образованию пор в шве.

При увеличении сварочного тока и уменьшении напряжения дуги резко увеличивается глубина провара, уменьшается ширина и увеличивается высота усиления шва. Если сварочный ток и напряжение дуги чрезмерно увеличены, то шов получается очень выпуклым.

При сварке на одном и том же токе более тонкой проволокой повышается устойчивость горения дуги, уменьшается разбрызгивание жидкого металла, увеличивается глубина проплавления основного металла, повышается производительность сварки.

Чтобы получить качественные плотные швы, необходимо не только использовать проволоку соответствующей марки с чистой поверхностью, но и обеспечить хорошую защиту сварочной ванны от соприкосновения с воздухом.

Для этого расход углекислого газа должен составлять 5-12 л/мин при сварке проволокой диаметром 0,5-1,2 мм и 14-25 л/мин при сварке проволокой диаметром 1,6-3,0 мм. С повышением сварочного тока, напряжения дуги и вылета электрода расход углекислого газа соответственно увеличивается.

В табл. 68 приведены рекомендуемые в зависимости от толщины свариваемого металла диаметры электродной проволоки, а в табл. 69 - пределы сварочного тока, напряжения дуги, величины вылета электрода и расход углекислого газа в зависимости от диаметра электродной проволоки.

При сварке соединений с зазором без подкладок сварочный ток устанавливают по нижнему пределу, а при сварке соединений без зазора либо с зазором, но на подкладке - по верхнему пределу. При полуавтоматической сварке величина сварочного тока может быть несколько большей, чем при автоматической.

Таблица 69. Ориентировочные режимы сварки в углекислом газе в нижнем положении низколегированной проволокой различного диаметра.

Диаметр электродной проволоки, мм

Сварочный ток, А.

Напряжение дуги, В

Вылет электрода

Расход углекислого газа, л/мин

При сварке в горизонтальном, вертикальном и потолочном положениях сварочных ток должен быть на 10-20% меньше, чем при сварке в нижнем положении. Ток также уменьшают при сварке легированных и высоколегированных сталей.

Скорость сварки стыковых соединений принимают в зависимости от толщины свариваемого металла, а тавровых соединений - также и от катета шва.

Скорость полуавтоматической сварки обычно меньше, чем автоматической. При полуавтоматической сварке скорость перемещения электрода неравномерна, что приводит к неравномерной глубине провара по длине соединения, а при сварке тонкого металла - к прожогам.

Стыковые соединения на металле толщиной до 2 мм лучше сваривать в вертикальном положении сверху вниз. Угловые вертикальные швы катетом до 5 мм также выполняют сверху вниз. Соединения на металле толщиной до 1 мм с отбортовкой кромок более рационально сваривать неплавящимся угольным электродом в углекислом газе.


Режим сварки как совокупность характеристик (параметров) сварочного процесса, определяющих свойства получаемых сварных соединений, является компонентом технологии сварки. Для каждого способа и разновидности сварки применяют определенный набор параметров режима и их значений.

В специализированной литературе приводится множество рекомендаций по режимам сварки преимущественно в виде таблиц, данные которых составлены на основе результатов производственного опыта. Большинство приводимых данных относится к сварке углеродистых и низколегированных сталей, показывает числовые значения основных (обязательных) параметров для соединений разных типов и толщине металла в нижнем положении. Сведения об остальных параметрах режима и других условиях сварки приводятся эпизодически, не всегда, иногда в виде кратких записей в тексте. Но фактически их влияние тоже учитывается при отработке режимов сварки.

Специалисты Пермского нацио-нального исследовательского политехнического университета провели работу по изучению методики определения одного из «неосновных» параметров режима - числа проходов при многопроходной дуговой сварке.

В литературе имеется мало сведений об этом параметре режима. Известно, что металл повышенных толщин можно сварить с разным числом проходов. По экономическим соображениям предпочтительным представляется сварка с минимальным числом проходов, так как при этом будут меньше трудозатраты на зачистку швов от шлака после каждого прохода. Но должны учитываться и другие факторы.

Впервые вопрос о расчете числа проходов был изучен В. П. Демянцевичем, применительно к ручной дуговой сварке покрытыми электродами. Была показана связь оптимального числа проходов с необходимостью получения слоя наплавленного за один проход металла, имеющего определенную площадь поперечного сечения. Это положение связывается со скоростью перемещения электрода вдоль стыка. Как при слишком малой, так и при слишком большой скорости сварки возможно образование дефектов - непроваров и неудовлетворительное формирование шва.

Также впервые указано на необходимость сварки на разных режимах первого (корневого) и последующих проходов. Площадь наплавки за один проход связывается с диаметром электрода. Для ручной дуговой сварки рекомендованы следующие зависимости:

  •  для первого прохода F1 = (6/8) dэ,
  •  для последующих проходов

Fп = (8/12)dэ.

В этих формулах dэ - диаметр электрода в мм; F1 и Fп - площади поперечного сечения соответственно первого и каждого последующего прохода в мм2.

Общее число проходов n может быть определено по формуле:

n = (Fн. м. - F1)/Fп + 1,

где Fнм - общая площадь поперечного сечения наплавленного металла всего шва в мм2.


В настоящее время значения площадей поперечного сечения наплавленного металла для стандартных сварных соединений можно найти в изданных еще в советское время Общемашиностроительных укрупненных нормативах времени (ОУНВ) на разные способы сварки. Разработчики этих документов проводили расчеты в помощь нормировщикам сварочных работ, но они могут использоваться для решения других технических задач.

В ОУНВ на ручную дуговую сварку в Приложении 10 приведены формулы для расчета площади поперечного сечения наплавленного металла всех сварных соединений из ГОСТ 5264-80, а в Приложениях 2-7 - рассчитанные по этим формулам значения площадей для разных толщин металла или катетов угловых швов.

Аналогичные, но еще более обширные сведения имеются в ОУНВ на дуговую сварку в среде инертных газов. Там так же в приложении приведены расчетные формулы, а сами рассчитанные по ним значения площадей в карты неполного штучного времени для каждого типа соединения по ГОСТ 14771-76 (для сталей) и ГОСТ 14806-80 (для алюминия и алюминиевых сплавов). Особенно важно, что в тех же картах неполного штучного времени имеются данные о количестве проходов.

К достоинствам ОУНВ следует отнести большую дифференциацию интересующих нас данных по способам сварки (ручная, полуавтоматическая, автоматическая), типам электродов (плавящийся, неплавящийся), группам свариваемых материалов (углеродистые и низколегированные стали, высоколегированные и легированные, алюминий и алюминиевые сплавы, медь и медно-никелевые сплавы).

К сожалению, в специализированной литературе нет аналогичных данных для сварки под флюсом. В принципе их можно получить расчетами, учитывая, что основные виды разделки кромок по ГОСТ 8713-79 аналогичны таковым для сварки в защитных газах и значит можно использовать те же формулы для расчета площадей поперечного сечения наплавленного металла, а конкретные значения конструктивных элементов подготовки кромок и размеров швов имеются в ГОСТе. На данный момент такие расчеты не проводились.

Современные методы и средства статистической обработки данных позволяют значительно упростить работу пользователей. В частности табличное представление данных во многих случаях можно заменить аналитическими моделями. Такую свертку таблиц провели в отношении данных о площадях наплавленного металла для разных типов соединений из ГОСТ 5264-80 и 14771-86. Расчеты показали, что значения площадей Fнм достаточно точно описываются формулами вида полинома второй степени.

Fнм = b1 + b1S + b2S2,

где S - толщина свариваемых деталей (или катет шва для соединений с угловыми швами); b0, b1, b2 - коэффициенты уравнения.

Для каждого типа сварного соединения коэффициенты индивидуальны. Чтобы рассчитать требуемую площадь, достаточно найти соответствующую формулу и подставить в нее значения толщины металла S (или катет шва). Этим полиноминальные модели выгодно отличаются от приводимых в литературе общих формул для расчета площадей.

В качестве примера приведены две формулы для расчета площади Fнм в соединении С17 - одну из ОУНВ, другую - полученную статистической обработкой данных:

Fнм = Sb + (S - c)2 tgα + 0,75eg,

Fнм = -9,36 + 3,26S + 0,33S2.

Видно, что для расчетов по первой формуле необходимо для каждой толщины металла брать из ГОСТа еще пять значений конструктивных элементов подготовки кромок и размеров швов, тогда как во втором выражении присутствует только одна переменная - толщина металла S.

Таким образом, в рассмотренных источниках информации есть данные об общих площадях поперечных сечений наплавленного металла для стандартных сварных соединений. К сожалению, ОУНВ были изданы более 20 лет тому назад, с тех пор не пересматривались и не переиздавались, поэтому в настоящее время они малодоступны для широкого круга специалистов.

Еще большую проблему создает неопределенность рекомендаций о расчетных значениях площадей F1 и Fп для первых и последующих проходов (см. таблицы 1 и 2).


  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то