Развитие тэс. Перспективы развития тэс и аэс

Несмотря на бурное развитие отраслей нетрадиционной энергетики в последние десятилетия большая часть производимой в мире электроэнергии по-прежнему приходится на долю энергии, получаемой на тепловых электростанциях. При этом возрастающая с каждым годом потребность в электричестве оказывает стимулирующее воздействие на развитие тепловой энергетики. Энергетики во всём мире работают в сторону усовершенствования ТЭС, повышения их надёжности, экологической безопасности и эффективности.

ЗАДАЧИ ТЕПЛОЭНЕРГЕТИКИ

Теплоэнергетика – это отрасль энергетики, в центре внимания которой находятся процессы преобразования тепла в другие виды энергии. Современные теплоэнергетики, основываясь на теории горения и теплообмена, занимаются изучением и усовершенствованием существующих энергоустановок, исследуют теплофизические свойства теплоносителей и стремятся минимизировать вредное экологическое воздействие от работы тепловых электростанций.

ЭНЕРГОУСТАНОВКИ

Тепловая энергетика немыслима без теплоэлектростанций. Тепловые энергоустановки функционируют по следующей схеме. Сначала топливо органического происхождения подаётся в топку, где оно сжигается и нагревает, проходящую по трубам воду. Вода, нагреваясь, преобразуется в пар, который заставляет вращаться турбину. А благодаря вращению турбины активизируется электрогенератор, благодаря которому генерируется электрический ток. В качестве топлива в тепловых электростанциях используется нефть, уголь и другие невозобновляемые источники энергии.

Кроме ТЭС, существуют также установки, в которых тепловая энергия превращается в электрическую без вспомогательной помощи электрогенератора. Это теплоэлектрические, магнито-гидродинамические генераторы и другие энергоустановки.

ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ТЕПЛОЭНЕРГЕТИКИ

Главным негативным фактором в развитии теплоэнергетики стал тот вред, который наносят окружающей среде в процессе своей работы тепловые электростанции. При сгорании топлива в атмосферу выбрасывается огромное количество вредных выбросов. К ним относятся и летучие органические соединения, и твёрдые частицы золы, и газообразные оксиды серы и азота, и летучие соединения тяжёлых металлов. Кроме того, ТЭС сильно загрязняют воду и портят ландшафт из-за необходимости организации мест для хранения шлаков, золы или топлива.

Также, функционирование ТЭС сопряжено с выбросами парниковых газов. Ведь тепловые электрические станции выбрасывают огромное количество CO 2 , накопление которого в атмосфере изменяет тепловой баланс планеты и становится причиной возникновения парникового эффекта – одной из актуальнейших и серьёзнейших экологический проблем современности.

Вот почему важнейшее место в современных разработках тепловой энергетики должно отводиться изобретениям и инновациям, способным усовершенствовать ТЭС в сторону их экологической безопасности. Речь идёт о новых технологиях очистки топлива, используемого ТЭС, создании, производстве и установке на ТЭС специальных очистительных фильтров, строительства новых тепловых электростанций, спроектированных изначально с учётом современных экологических требований.

ПЕРСПЕКТИВЫ РАЗВИТИЯ

Теплоэнергетические устройства являются, и ещё очень долго будут являться основным источником электрической энергии для человечества. Поэтому теплоэнергетики всего мира продолжают усиленно развивать данную перспективную отрасль энергетики. Их усилия, прежде всего, направлены на повышение эффективности тепловых электростанций, необходимость которого диктуется как экономическими, так и экологическими факторами.

Жёсткие требования мирового сообщества к экологической безопасности энергетических объектов, стимулируют инженеров на разработку технологий, снижающих выбросы ТЭС до предельно допустимых концентраций.

Аналитики утверждают, что современные условия таковы, что перспективными окажутся в будущем ТЭС, работающие на угле или газе, поэтому именно в данном направлении теплоэнергетики всего мира прикладывают больше всего усилий.

Доминирующая роль теплоэнергетики в обеспечении мировых человеческих потребностей в электричестве будет сохраняться ещё длительное время. Ведь, несмотря на стремление развитых стран как можно скорее перейти на более безопасные с экологической точки зрения и доступные (что немаловажно в свете приближающегося кризиса исчерпания органического топлива) источники энергии, быстрый переход к новым способам получения энергии невозможен. А это означает, что теплоэнергетика будет активно развиваться и дальше, но, разумеется, с учётом новых требований к экологической безопасности используемых технологий.

Негативные экологические и социальные последствия строительства крупных ГЭС заставляют внимательно посмотреть на их возможное место в электроэнергетике будущего.

Будущее ГЭС

Большие гидроэлектростанции выполняют следующие функции в энергосистеме:

  1. производство электроэнергии;
  2. быстрое согласование мощности генерации с потребляемой мощностью, стабилизация частоты в энергосистеме;
  3. накопление и хранение энергии в форме потенциальной энергии воды в поле тяготения Земли с преобразованием в электроэнергию в любое время.

Выработка электроэнергии и маневр мощностью возможны на ГЭС любого масштаба. А накопление энергии срок от нескольких месяцев до нескольких лет (на зиму и на маловодные годы) требует создания больших водохранилищ.

Для сравнения: автомобильный аккумулятор массой 12 кг напряжением 12 В и емкостью 85 амперчасов может хранить 1,02 киловатт-часа (3,67 МДж). Чтобы запасти такое количество энергии и преобразовать ее в электрическую в гидроагрегате с КПД 0,92, нужно поднять 4 тонны (4 куб.м) воды на высоту 100 м. или 40 тонн воды на высоту 10 м.

Чтобы ГЭС мощностью всего 1 МВт работала на запасенной воде 5 месяцев в году по 6 часов в день на запасенной воде, нужно на высоте 100 м накопить и затем пропустить через турбину 3,6 миллиона тонн воды. При площади водохранилища 1 кв.км понижение уровня составит 3,6 м. Такой же объем выработки на дизельной электростанции с КПД 40% потребует 324 т солярки. Таким образом, в холодном климате запасение энергии воды на зиму требует высоких плотин и больших водохранилищ.

Кроме того, на бо льшей части территории России в зоне вечной мерзлоты малые и средние реки зимой промерзают до дна. В этих краях малые ГЭС зимой бесполезны.

Большие ГЭС неизбежно находятся на значительном расстоянии от многих потребителей, и следует учитывать затраты на строительство линий электропередачи и потери энергии а нагрев проводов. Так, для Транссибирской (Шилкинской) ГЭС стоимость строительства ЛЭП-220 до Транссиба протяженностью всего 195 км (очень мало для такой стройки) превышает 10% всех затрат. Затраты на строительство сетей электропередачи столь существенны, что в Китае мощность ветряков, до сих пор не подключенных к сети, превышает мощность всей энергетики России к востоку от Байкала.

Таким образом, перспективы гидроэнергетики зависят от прогресса технологий и производства, и хранения и передачи энергии в совокупности.

Энергетика – очень капиталоемкая и потому консервативная отрасль. До сих пор работают некоторые электростанции, особенно ГЭС, построенные в начале двадцатого века. Поэтому для оценки перспективы на полвека вместо объемных показателей того или иного вида энергетики важнее смотреть на скорость прогресса в каждой технологии. Подходящие показатели технического прогресса в генерации – КПД (или процент потерь), единичная мощность агрегатов, стоимость 1 киловатта мощности генерации, стоимость передачи 1 киловатта на 1 км, стоимость хранения 1 киловатт-часа в сутки.

Аккумулирование энергии

Хранение электроэнергии – новая отрасль в энергетике. Долгое время люди хранили топливо (дрова, уголь, потом нефть и нефтепродукты в цистернах, газ в емкостях под давление и подземных хранилищах). Потом появились накопители механической энергии (поднятой воды, сжатого воздуха, супермаховики и др.), среди них лидером остаются гидроаккумулирующие электростанции.

Вне зон вечной мерзлоты тепло, накопленное солнечными водонагревателями, уже можно закачивать под землю для отопления домов зимой. После распада СССР прекратились опыты по использованию энергии солнечного тепла для химических превращений.

Известные химические аккумуляторы имеют ограниченное количество циклов заряд-разряд. Суперконденсаторы имеют намного бо льшую долговечность, но их емкость пока недостаточна. Очень быстро совершенствуются накопители энергии магнитного поля в сверхпроводящих катушках.

Прорыв в распространении накопителей электроэнергии произойдет, когда цена снизится до 1 долл. за киловатт-час. Это позволит широко использовать виды электрогенерации, не способные работать непрерывно (солнечная, ветровая, приливная энергетика).

Альтернативная энергетика

Из технологий генерации быстрее всего сейчас происходят перемены в солнечной энергетике. Солнечные батареи позволяют производить энергию в любом потребном количестве – от зарядки телефона до снабжения мегаполисов. Энергии Солнца на Земле в сотню раз больше, чем остальных видов энергии вместе взятых.

Ветроэлектростанции прошли период снижения цен и находятся на этапе роста размеров башен и мощности генераторов. В 2012 году мощность всех ветряков мира превзошла мощность всех электростанций СССР. Однако в 20-е годы 21 века возможности улучшения ветряков будут исчерпаны и двигателем роста останется солнечная энергетика.

Технология больших ГЭС миновала свой «звездный час», с каждым десятилетием больших ГЭС строят все меньше. Внимание изобретателей и инженеров переключается на приливные и волновые электростанции. Однако приливы и большие волны есть не везде, поэтому их роль будет невелика. В 21 веке еще будут строить малые ГЭС, особенно в Азии.

Получение электроэнергии за счет тепла, идущего из недр Земли (геотермальная энергетика) перспективно, но лишь в отдельных районах. Технологии сжигания органического топлива еще несколько десятилетий будут составлять конкуренцию солнечной и ветровой энергетике, особенно там, где мало ветра и солнца.

Быстрее всего совершенствуются технологии получения горючего газа путем брожения отходов, пиролиза или разложения в плазме). Тем не менее, твердые бытовые отходы всегда перед газификацией будут требовать сортировки (а лучше раздельного сбора).

Технологии ТЭС

КПД парогазовых электростанций превысил 60%. Переоборудование всех газовых ТЭЦ в парогазовые (точнее, газопаровые) позволит увеличить выработку электроэнергии более чем на 50% без увеличения сжигания газа.

Угольные и мазутные ТЭЦ намного хуже газовых и по КПД, и по цене оборудования, и по количеству вредных выбросов. Кроме того, добыча угля требует больше всего человеческих жизней на мегаватт-час электроэнергии. Газификация угля на несколько десятилетий продлит существование угольной отрасли, но вряд ли профессия шахтера доживет до 22 века. Очень вероятно, что паровые и газовые турбины будут вытеснены быстро совершенствующимися топливными элементами в которых химическая энергия преобразуется в электрическую минуя стадии получения тепловой и механической энергии. Пока же топливные элементы очень дороги.

Атомная энергетика

Коэффициент полезного действия АЭС последние 30 лет рос медленнее всего. Совершенствование ядерных реакторов, каждый из которых стоит несколько миллиардов долларов, происходит очень медленно, а требования безопасности приводят к росту стоимости строительства. «Ядерный ренессанс» не состоялся. С 2006 г. в мире ввод мощностей АЭС меньше не только ввода ветровых, но и солнечных. Тем не менее, вероятно что некоторые АЭС доживут до 22 века, хотя из-за проблемы радиоактивных отходов их конец неизбежен. Возможно, в 21 веке будут работать и термоядерные реакторы, но их малое число, безусловно, «погоды не сделает».

До сих пор остается неясной возможность реализации «холодного термояда». В принципе, возможность термоядерной реакции без сверхвысоких температур и без образования радиоактивных отходов не противоречит законам физики. Но перспективы получения таким способом дешевой энергии очень сомнительны.

Новые технологии

И немного фантастики в чертежах. Сейчас в России проходят проверку три новых принципа изотермического преобразования теплоты в электричество. У этих опытов очень много скептиков: ведь нарушается второе начало термодинамики. Пока получена одна десятая микроватта. В случае успеха, сначала появятся батарейки для часов и приборов. Потом лампочки без проводов. Каждая лампочка станет источником прохлады. Кондиционеры будут вырабатывать электроэнергию вместо того чтобы потреблять ее. Провода в доме станут не нужны. Когда фантастика станет явью – судить рано.

А пока провода нам нужны. Больше половины цены киловатт-часа в России приходится на стоимость строительства и содержания линий электропередач и подстанций. Более 10% вырабатываемой электроэнергии уходит на нагрев проводов. Снизить затраты и потери позволяют «умные сети», автоматически управляющие множеством потребителей и производителей энергии. Во многих случаях для снижения потерь лучше передавать постоянный ток, чем переменный. Вообще избежать нагрева проводов можно, сделав их сверхпроводящими. Однако сверхпроводники, работающие при комнатной температуре, не найдены и неизвестно, будут ли найдены.

Для малонаселенных территорий с высокими затратами на транспортировку также важна распространенность и общедоступность источников энергии.

Наиболее распространена энергия Солнца, но Солнце видно не всегда (особенно за Полярным кругом). Зато зимой и ночью часто дует ветер, но не всегда и не везде. Тем не менее, ветросолнечные электростанции уже сейчас позволяют в разы снизить расход солярки в отдаленных поселках.

Некоторые геологи уверяют, что нефть и газ образуются почти повсеместно и в наши дни из углекислого газа, попадающего с водой под землю. Правда, использование гидроразрыва пластов («фрекинга») разрушает естественные места, где нефть и газ могут скапливаться. Если это верно, то небольшое количество нефти и газа (в десятки раз меньше, чем сейчас) можно добывать почти везде без ущерба для геохимического кругооборота углерода, вот только экспортировать углеводороды – значит, лишать себя будущего.

Разнообразие природных ресурсов в мире означает, что устойчивое получение электроэнергии требует сочетания разных технологий применительно к местным условиям. В любом случае, неограниченное количество энергии на Земле получить нельзя и по экологическим, и по ресурсным причинам. Поэтому рост производства электроэнергии, стали, никеля и других материальных вещей на Земле в ближайшем столетии неизбежно сменится ростом производства интеллектуального и духовного.

Игорь Эдуардович Шкрадюк

Основные показатели современного состояния ТЭС

Установленная мощность ТЭС по России – 148,4 млн. кВт, из которых около 50% составляют теплоэлектроцентрали (ТЭЦ) и около 50% - конденсационные электростанции (КЭС).

Установленная мощность ТЭС в РАО «ЕЭС России» на 2004 г. - 121,4 млн. кВт. Производство электроэнергии на ТЭС РАО «ЕЭС России» - 521,4 млрд. кВт-ч. На РАО «ЕЭС России» было также выработано 465,8 млн. Гкал тепловой энергии, что эквивалентно 541,7 млрд. кВт-ч тепловой энергии.

В таблице 1 приводятся показатели топливопотребления по видам использованного топлива.

Таблица 1. Потребление топлива по РАО «ЕЭС России» по видам в 2004 г.

Эффективность ТЭС

Существующая эффективность конденсационных электростанций составляет 36,8%, а средний КПД э по КЭС и ТЭЦ холдинга - 29,45%.

Для сравнения различных энергетических сценариев необходимо иметь данные о КПД мощностей, производящих электроэнергию.

Полезной продукцией теплоэнергетики являются электроэнергия и тепло, вырабатываемые на ТЭЦ, КЭС и пиковых котельных.

Мощности КЭС предназначены только для выработки электроэнергии со сбросом в конденсаторы-охладители отработанного пара, содержащего около 50% первоначально подведенной энергии. Электрический коэффициент полезного действия (КПД э) таких станций сравнительно высок, однако обычно не превышает для имеющихся мощностей (КЭС) 40%.

Мощности ТЭЦ работают в «теплофикационном режиме», при котором нагреваемый пар используется последовательно в турбине для выработки электроэнергии, а остаточная энергия пара подается потребителям тепла. Теплофикационный отбор пара приводит к снижению электрического коэффициента полезного действия (КПД э) по сравнению с работой ТЭЦ в «конденсационном» режиме, при котором пар срабатывается в турбине полностью, но в дальнейшем сбрасывается в окружающую среду. В то же время общая эффективность использования топлива в теплофикационном режиме возрастает, поскольку отработанный пар, содержащий еще более половины энергии, почти полностью утилизируется. Эффективность использования топлива на ТЭЦ определяют коэффициентом использования топлива (КИТ), который может достигать 85% и выше. В отсутствие потребителей тепла, например, в летние месяцы, ТЭЦ может работать в конденсационном режиме, как и КЭС с аналогичным КПД э.

Пиковые котельные вырабатывают только тепло.

По РАО «ЕЭС России» основная часть тепловой энергии и более половины электроэнергии вырабатывается на ТЭЦ. Небольшая часть тепловой энергии вырабатывается в пиковых котельных, включаемых лишь в сильные морозы, при недостатке тепловой мощности, отбираемой с турбин. Доля топлива, расходуемого в таких котельных, может быть принята равной около 10% от его общего расхода по РАО «ЕЭС России», что соответствует данным.

В отчете РАО «ЕЭС России» за 2004 год приводятся данные по удельному расходу топлива раздельно на выработку тепловой и электрической энергии. Такое разделение условно и вводится в основном для оценки себестоимости производства того и другого вида энергии. Существуют различные методики разделения топливозатрат между производством тепла и электроэнергии на ТЭЦ. В дальнейших расчетах к расходу топлива на выработку тепловой энергии отнесено топливо, расходуемое в пиковых котельных, а также перерасход топлива, связанный со снижением КПД э ТЭЦ, работающей в теплофикационном режиме, по сравнению с конденсационным режимом.

В таблице 2, по данным, рассчитываются первичная энергия, потребленная РАО «ЕЭС России» на выработку энергии в различных режимах, а также средние по холдингу КИТ и КПД э. Для расчета данные, приведенные в по электрической и тепловой энергии, сначала объединяются, а потом из них выделяются средние показатели КИТ и КПД э с учетом принятой доли расхода топлива в пиковых котельных.

Таблица 2. Расчет основных показателей эффективности производства энергии на РАО «ЕЭС России»

Вид отпускаемой энергии

Полезный отпуск (2004 г.)

удельный расход топлива КПД (КИТ) Потребление первичной энергии
Электрическая энергия

521,4 млрд. кВт ч

334,1 г у.т./кВт ч

1418,2 млрд. кВт ч

Тепловая энергия

541,7 млрд. кВт ч

124,5 г у.т./кВт ч

549,1 млрд. кВт ч

Суммарный отпуск энергии, суммарные энергозатраты и коэффициент использования топлива 1063,1 млрд. кВт ч КИТ= 1063,1/ 1967,2 = 54%

1967,2 млрд. кВт ч

Потребление первичной энергии на выработку тепла в пиковых котельных (оценочная доля от общего потребления – 10%)

196,7 млрд. кВт ч

Потребление первичной энергии на выработку электроэнергии в конденсационном и теплофикационном режимах, и средний электрический КПД

КПД э = 521,4/1770,5 = 29,45%

1770,5 млрд. кВт ч

Из таблицы 2 видно, что средний по холдингу КИТ (54%) сравнительно низок, из-за большой доли конденсационной выработки (если бы вся электроэнергия вырабатывалась в теплофикационном режиме, он бы достигал 70% и более).

Перспективы развития ТЭС

Для оценки «парогазового» сценария необходимо иметь представление о том, насколько может быть повышена существующая эффективность.

Согласно рекомендуемым требованиям, замещающее оборудование ТЭС на угле должно иметь КПД э 42-46% в конденсационном режиме, а ТЭС на природном газе – 52-58% в конденсационном режиме и 47% в теплофикационном. Такое резкое повышение КПД э для ТЭС, использующих природный газ, объясняется возможностью применения парогазовой технологии (ПГУ-ТЭС), при которой газ сжигается в энергетической газотурбинной установке (ГТУ) с получением электроэнергии, а тепло выхлопных газов утилизируется путем нагрева пара, используемого в обычной паровой турбине. Тепло пара, отработанного в паровой турбине, может быть использовано для нужд теплоснабжения, как и на обычной ТЭЦ (см. выше).

В предписано, что при строительстве новых ТЭС на газе можно использовать только парогазовые технологии.

В настоящее время в России существует не более десятка эксплуатирующихся и строящихся ПГУ–ТЭС, что не влияет существенно на средние показатели КПДэ и КИТ по РАО «ЕЭС России».

В таблице 3 приведены сведения о 6 таких станциях, по которым удалось получить сведения из открытых источников.

Таблица 3. Строящиеся и эксплуатирующиеся ПГУ-ТЭС в Российской Федерации

№ п/п Наименование Мощность, МВт Агрегат Электрический КПД нетто удельные капитальные вложения $/кВт стадия внедрения Примечание источник
Северо-западная ТЭЦ блок № 1 ПГУ-450 Эксплуа-тируется Строится второй блок той же мощности собственные данные
Ивановская ГРЭС блок № 1 ПГУ-325 с ГТЭ-110 строительство начато 24/02/05 Строительство планируется завершить в марте 2007 г.
Сочинская ТЭС Запущена в декабре 2004 г.
Уфимская ТЭЦ-5 ПГУ-450 с ГТЭ - 160 начало строительства по плану - сентябрь 2002 завершение строительства 2007г
Калининградская ТЭЦ-2 ПГУ-450 - 2 шт. Первый блок запущен 28 октября 2005 г.
Тюменская ТЭЦ-1 запущена 26 февраля 2004 г. срок строительства - 4 года

Для оценки перспектив ТЭС прежде всего необходимо осознать их преимущества и недостатки в сравнении с другими источниками электроэнергии.

К числу преимуществ можно отнести следующие.

  • 1. В отличие от ГЭС тепловые электростанции можно размещать относительно свободно с учетом используемого топлива. Газомазутные ТЭС могут быть построены в любом месте, так как транспорт газа и мазута относительно дешев (по сравнению с углем). Пылеугольные ТЭС желательно размещать вблизи источников добычи угля. К настоящему времени «угольная» теплоэнергетика сложилась и имеет выраженный региональный характер.
  • 2. Удельная стоимость установленной мощности (стоимость 1 кВт установленной мощности) и срок строительства ТЭС значительно меньше, чем АЭС и ГЭС.
  • 3. Производство электроэнергии на ТЭС в отличие от ГЭС не зависит от сезона и определяется только доставкой топлива.
  • 4. Площади отчуждения хозяйственных земель для ТЭС существенно меньше, чем для АЭС, и, конечно, не идут ни в какое сравнение с ГЭС, влияние которых на экологию может иметь далеко не региональный характер. Примерами могут служить каскады ГЭС на р. Волге и Днепре.
  • 5. На ТЭС можно сжигать практически любое топливо, в том числе самые низкосортные угли, забалластированные золой, водой, породой.
  • 6. В отличие от АЭС нет никаких проблем с утилизацией ТЭС по завершении срока службы. Как правило, инфраструктура ТЭС существенно «переживает» основное оборудование (котлы и турбины), установленное на ней, а здания, машзал, системы водоснабжения и топливоснабжения и т.д., которые составляют основную часть фондов, еще долго служат. Большинство ТЭС, построенных более 80 лег по плану ГОЭЛРО, до сих пор работают и будут работать дальше после установки на них новых, более совершенных турбин и котлов.

Наряду с этими достоинствами, ТЭС имеет и ряд недостатков.

  • 1. ТЭС - самые экологически «грязные» источники электроэнергии, особенно те, которые работают на высокозольном сернистом топливе. Правда, сказать, что АЭС, не имеющие постоянных выбросов в атмосферу, но создающие постоянную угрозу радиоактивного загрязнения и имеющие проблемы хранения и переработки отработавшего ядерного топлива, а также утилизации самой АЭС после окончания срока службы, или ГЭС, затопляющие огромные площади хозяйственных земель и изменяющие региональный климат, являются экологически более «чистыми» можно лишь со значительной долей условности.
  • 2. Традиционные ТЭС имеют сравнительно низкую экономичность (лучшую, чем у АЭС, но значительно худшую, чем у ПГУ).
  • 3. В отличие от ГЭС, ТЭС с трудом участвуют в покрытии переменной части суточного графика электрической нагрузки.
  • 4. ТЭС существенно зависят от поставки топлива, часто привозного.

Несмотря на все эти недостатки, ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, по крайней мере на ближайшие 50 лет.

Перспективы строительства мощных конденсационных ТЭС тесно связаны с видом используемого органического топлива. Несмотря на большие преимущества жидкого топлива (нефти, мазута) как энергоносителя (высокая калорийность, легкость транспортировки), его использование на ТЭС будет все более и более сокращаться не только в связи с ограниченностью запасов, но и в связи с его большой ценностью как сырья для нефтехимической промышленности. Для России немалое значение имеет и экспортная ценность жидкого топлива (нефти). Поэтому жидкое топливо (мазут) на ТЭС будет использоваться либо как резервное топливо на газомазутных ТЭС, либо как вспомогательное топливо на пылеугольных ТЭС, обеспечивающее устойчивое горение угольной пыли в котле при некоторых режимах.

Использование природного газа на конденсационных паротурбинных ТЭС нерационально: для этого следует использовать парогазовые установки утилизационного типа, основой которых являются высокотемпературные ГТУ.

Таким образом, далекая перспектива использования классических паротурбинных ТЭС и в России, и за рубежом прежде всего связана с использованием углей, особенно низкосортных. Это, конечно, не означает прекращения эксплуатации газомазутных ТЭС, которые будут постепенно заменяться ПТУ.

Тепловая часть электростанций на каждом этапе своего развития определяется прежде всего техническим уровнем основных агрегатов теплоэнергетического оборудования: паровых котлов и паровых двигателей.

В зависимости от мощности, параметров и габаритов этого оборудования решались вопросы компоновки станций, в развитии которых можно выделить 4 этапа.

Первый этап характеризуется применением ручных топок со слоевым сжиганием топлива на плоских колосниковых решетках, расположенных под котлами разных типов - от жаротрубных до горизонтальных водотрубных. Паропроизводительность водотрубных котлов 3 т/ч и мощность паровых двигателей до 5000 кВт. Применяли пар давлением до 15 атм. с перегревом до 300 °С.

Этот этап для наиболее развитых в экономическом отношении стран относится в основном к концу XIX века.

Первая четверть XX века характеризуется качественными изменениями в трех направлениях:

Механизация топок, так как ручная загрузка становится непосильной при возросшей производительности: для бурых углей разработана конструкция ступенчатых топок, для каменных - топок с цепными решетками;

Переход к водотрубным котлам с меньшими диаметрами барабанов и большим количеством труб в связи с ростом давления пара и производительности котла. Основные типы котлоагрегатов в этот период -горизонтально и вертикально водотрубные котлы;

Замена паровой машины паровой турбиной. Количественные характеристики значительно возрастают: паропроизводительность достигает 30 т/ч, мощность турбогенераторов - 30 000 кВт. Качественные характеристики: давление пара до 40 атм., перегрев до 420 °С.

Для второго этапа характерно соотношение между числом турбин и котлов 1: 5 -г 1: 8. Необходимость установки 5-8 котлов на одну турбину сказывалась прежде всего на компоновке тепловой части электростанций с 2-х рядным размещением котлов.

На третьем этапе наблюдался переход к факельному сжиганию угольной пыли в громадных камерных топках, экранированных для защиты облицовки радиационными поверхностями нагрева, которые увеличивали удельную паропроизводительность. Стремление интенсифицировать процесс горенья вызывает введение воздухоподогревателей. Паропроизводительность котлов достигает 400 т/ч, мощность турбогенераторов - 120 ООО кВт. Давление пара возрастает до 125 атм., что вынуждает применять промежуточный перегрев пара во избежание слишком большого его увлажнения на последних дисках конденсационных турбин. Температура пара перед турбиной достигает 525°С.

Для этого периода характерно применение однобарабанных и безбарабанных котлов. Их количество на турбину снижается и доходит до одного, а котельные становятся однорядными, расположенными параллельно машинному залу. Так происходит возникновение «блочных» станций (блок: котел-турбина).


Развитие блочных установок характеризует четвертый этап. Современный этап отличается высокой паропроизводительностью котлоагрегатов (до 2 500 т/ч и больше), способных снабжать паром находящуюся в блоке турбину мощностью 300, 500 и 800 МВт. Сверхкритические параметры пара требуют осуществления его двойного промежуточного перегрева .

Основными типами тепловых электростанций являются: паротурбинные конденсационные (КЭС) и теплофикационные (ТЭЦ).

Основными направлениями их развития всегда являлось укрупнение мощности устанавливаемого на них энергетического оборудования.

При этом если в 20 - 30 годы XX века единичная мощность энергетического оборудования ограничивалась размерами возможного резерва -в энергетической системе ограниченной мощности выход из строя крупного агрегата мог повлечь за собой весьма серьезные последствия для всей системы, то теперь, по мере создания крупнейших объединенных энергетических систем, эти ограничения были сняты - теперь мощность одного агрегата ограничивается не возможностями электроэнергетики, а достигнутым уровнем металлургической и машиностроительной промышленности.

В последние годы развитие конденсационных электростанций во всех развитых странах идет по блочной схеме (самый современный блок - один котел и одновальная турбина). Мощность таких блоков уже достигает 800 МВт (Славянская ГРЭС), а мощность самих электростанций достигает 3000 - 4000 МВт.

Все большее распространение в мировой теплоэнергетике получают теплофикационные электростанции. Их особенность состоит в том, что пар, отбираемый из нескольких участков проточной части паровых теплофикационных турбин, отдает свое тепло воде, проходящей через ряд водоподогревателей и затем отправляемой в теплофикационную сеть для использования промышленными и городскими потребителями.

В области комбинированного производства тепловой и электрической энергии наша страна всегда занимала ведущие позиции. Первой такой электростанцией была электростанция №3 в Ленинграде (1924 г.).

Мощность одной теплоэлектростанции достигает 1000 МВт и более. Однако мощность ТЭЦ не может возрастать выше определенной величины, которая ограничивается потребностями не в электроэнергии, подаваемой в энергетическую систему, а потребностями в тепловой энергии и допустимыми протяженностями тепловых сетей. Например, в городах с населением менее 1 млн чел. целесообразно сооружать ТЭЦ с турбоагрегатом мощностью 250 МВт.

Все более заметную роль в современной электроэнергетике играют атомные станции.

Первая промышленная атомная электростанция (АЭС) мощностью 5 МВт вступила в строй в июне 1954 года в городе Обнинске.

Опыт работы атомных электростанций у нас и в таких густонаселенных странах, как Англия, Франция, Германия, Япония, показывает, что при выполнении ряда определенных технических требований соблюдается полная радиационная безопасность для персонала станций и населения близлежащих районов.

Для АЭС не требуется строить громоздкие склады топлива и предусматривать большие территории для золо- и шлакоотвалов.

По техническим и экологическим соображениям следует ожидать быстрого прогресса в строительстве АЭС .

Достижение нового уровня развития какой - либо отрасли техники всегда порождает и новые проблемы. Так, наращиванье мощности электростанций за счет ввода крупных блоков при сверхкритических параметрах пара сделало актуальным решение проблемы регулирования суточных графиков нагрузок. Для покрытия пиков нагрузок велись разработки новых типов электростанций и агрегатов. За последние годы в теплоэнергетике началось использование газотурбинных и парогазовых установок.

В газотурбинных установках (ГТУ) роль генераторов газа повышенного давления играют турбореактивные двигатели, в частности отработавшие свой ресурс авиационные и судовые двигатели. Они весьма маневренны, запускаются за несколько минут, значительно проще в эксплуатации и дешевле паротурбинных. Отсутствие котельных агрегатов и ряда вспомогательных систем, а также указанные выше достоинства делают ГТУ экономичными и перспективными.

Другим примером нового достижения на пути повышения экономической эффективности теплового цикла и маневренности являются парогазовые установки (ПГУ), соединяющие в себе преимущества ГТУ (высокие начальные температуры цикла) и паротурбинных (низкие конечные температуры).

К числу новых способов использования природных энергетических источников можно отнести строительство геотермальных электростанций. В 1966 году на Камчатке был введен в эксплуатацию экспериментальный турбогенератор мощностью 2 500 кВт. Однако в ближайшем будущем широких масштабов строительства геотермальных электростанций не предвидится, в частности, из-за большого количества минеральных солей, содержащихся в геотермальных водах, с отложениями которых весьма трудно бороться.

Напротив, исключительно большие преимущества открываются в новейшей области энергетики высоких температур: использование плазмы в целях преобразования тепловой энергии в электрическую, минуя обычный тепловой цикл. Ближайшая реализация этого направления состоит в использовании магнитогидродинамических генераторов (МГД -генераторов).

В МГД - генераторе поток "горячих" электропроводящих газов направляется в межполюсное пространство мощных электромагнитов. Движение такого газа равносильно движению якоря с проводниками в магнитном поле, только ЭДС наводится в "мысленных" проводниках, образованных в слое газа. При помощи электродов, установленных по всей длине канала, электрическая энергия отводится во внешнюю цепь. Таким образом преобразование тепловой энергии происходит без турбины, без каких либо вращающихся частей.

Работа при высоких температурах (~2500 °С) позволяет весь цикл сделать исключительно экологичным. Применение МГД - генераторов в большой энергетике позволит примерно в 1,5 раза сократить затраты топлива на производство электроэнергии по сравнению с обычными тепловыми станциями. Замечательной особенностью МГД - генераторов является то, что они не требуют охлаждения водой и, следовательно, не загрязняют водоемы, а меньший относительный расход топлива и более полное его сгорание уменьшают загрязнения атмосферы. У нас уже работает МГД - генератор на 200 кВт, сооружается промышленная электростанция с МГД - генератором мощностью 25 МВт .

Дальнейшим развитием применения плазмы является создание термоядерного генератора, в котором будет использован сверхнагретый поток водорода в сверхсильном магнитном поле, образованном электромагнитами со сверхпроводником в качестве обмотки возбуждения.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то